

Toward a NASA Deep Space Communications System

Dr. Les Deutsch, Dr. Steve Lichten, Dr. Dan Hoppe
Jet Propulsion Laboratory, California Institute of Technology
Tony Russo, Dr. Don Cornwell
National Aeronautics and Space Administration

Challenge: Future Missions Generate More Data

 From SpaceOps 2016: We expect data rates from deep space missions to increase 10-fold each decade for 50 years

Presented in 2016: Decade 2: 100X Improvement over Today

Human and robotic users 100x todays data rates from Mars – up to 1 Gbps Dedicated Comm Relays
Extend the Internet to Mars
and enable public
engagement

Dedicated 12m
Stations
NASA + International
partnerships

Hybrid RF/Optical
Antenna
Potential reuse of
existing infrastructure,
in development today

High Performance Optical Terminal: Will be demonstrated on next NASA Discovery mission

Latest News: DSOC to fly on Psyche in 2022

Leverage Existing DSN infrastructure

- Unlike near-Earth optical comm, deep space requires significant investment in large ground stations
- Challenge: leverage the existing facilities of the DSN as much as possible
 - Ideal locations for viewing deep space missions
 - Power, frequency references, roads, skilled people, political agreements, terrestrial communications ...
- But we are still left with the expense of building large (8m-10m) optical telescopes

The Crazy Idea: Use existing DSN antennas

- Since before 2010, JPL engineers have suggested the possibility of mirroring the inner portion of a 34m DSN antenna to provide a large optical aperture
- Takes advantage of new optical telescope technologies – such as actuated spherical mirrors – to reduce cost
- Place a photon-counting optical detector at apex
- Use separate, much smaller aperture for uplink, reducing requirements on this larger system
- But will it work? It sounds pretty crazy!

Feasibility demonstrations

- We have used our R&D DSS-13 antenna to demonstrate concepts
 - Two spherical mirror segments installed on the inner dish
 - Simple receiver mounted at apex
- After calibration, images lined up between the mirrors
 - Maintained alignment through elevation and azimuth changes
 - Experiments showed alignment is maintained under varying conditions including weather
 - Alignment maintained over time using lookup tables to compensate for elevation
- Conclusion: The DSN 34m antenna is a superb optical telescope mount

Subsequent design work

- We have added a fast steering mirror to compensate for the kinds of pointing errors observed in the demonstrations thus far
- We are adding a 1K cryogenic optical front end that can tip with the antenna
 - Based on existing DSN RF systems

Studies to reduce risk

- We have continuing work to characterize the optical channel at Goldstone
- Structural analyses of the DSN 34m BWG design indicate that the antenna can accommodate the added mass of the optical system and maintain surface tolerance
- Ray-tracing analysis indicates that this design will tolerate the expected levels of stray light

Next step: Larger system on DSS-13

- We intend to proceed with a more comprehensive demonstration using DSS-13
- Seven 0.5m mirrors on the dish
 - Sufficient to show we can meet requirements
- Spherical aberration correction

Easing into the operational system

- Install 16-element "pod" of 1m hexagonal mirrors
 - ¼ the final capability
 - "Operational" configuration
- Includes a fully-functional optical communications receiver
- Can be completed in time to demonstrate with DSOC on Psyche in 2022
- Followed by four-pod configuration.
 - Operational-sized aperture area
- Test on DSS-13
- Transfer to new or existing operational Goldstone BWG antenna
- Can be completed in time to continue the demonstration with full 8m aperture during Psyche cruise to asteroid and during its prime mission

Meeting the requirements of future comm

- Studies of human missions to Mars show a projected requirement of ~250 Mbps
- Even at farthest distance, this can be accomplished using the RF/optical hybrid antenna
- Two Mars relays would, together, provide the data rate, using load balancing through an intersatellite link
- Since they will be in the same beam, a single RF/Optical hybrid antenna at each DSN locations will suffice
- The same antennas can provide RF services for uplink and backup
- Link calculations based on calculations for DSOC performance show the system will meet the anticipated requirements
- Two hybrid antennas can be arrayed to form an 11.3m equivalent aperture for more demanding links

Strategy for funding

- The NASA DSN budget is flat at best!
- All recent new antenna construction in the DSN has been funded out of savings from operational efficiencies
 - This includes the current construction of six new 34m beam waveguide antennas
 - Two are completed (in Australia) and two are currently under construction (in Madrid)
- By delaying the remaining two by two years, we can create a funding wedge for the first DSN hybrid antenna

- This will likely be the next of the new antennas, to be built at Goldstone, California
- We have completed loading studies that indicate this delay can be accommodated within the mission requirements in this time frame

Conclusions

- Hybrid RF/Optical antenna concept is feasible
- Hybrid RF/Optical antenna concept is affordable
- This system will meet the difficult requirements of human missions to Mars
- Optical communications in deep space is coming!

